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ABSTRACT 

Necessary conditions of optimality for state-variable inequality con- 

strained problems a r e  derived by examining the limiting behavior of the 

Kelley penalty function technique. The conditions s o  obtained differ f rom 

those presently known, with regard  to the behavior of the adjoint var iables  

a t  junctions of inter ior  and boundary a r c s .  A second, rigorous,  derivation 

i s  given; thi.s confirms the necessary conditions obtained by the limiting argu-  

ment .  These conditions a r e  related to those known ear l ie r ;  i n  par t icular ,  

it i s  shown that the e a r l i e r  conditions over-specify the behavior of the adjoint 

variables a t  the junctions. An example i s  used to demonstrate that the e a r l i e r  

conditions may  yield non-stationary t ra jec tor ies .  

F o r  the regular  case ,  i t  is shown that, under cer ta in  conditions, only 

boundary points, as opposed to boundary a r c s ,  a r e  possible. An analytic 

example iklustrates this behavior. 

:k 
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1. Introduction 

Necessary conditions for the optimality of state-variable inequality con- 

strained problems have been the subject of much r e s e a r c h  in  the past ten  

y e a r s .  Gamkrelidze [l], i n  1960, approached the problem via the Pontryagin 

maximum principle. He adjoined the f i r s t  t ime -derivative of the constraint - - 
which explicitly contained the control by his ' regular i ty '  assumption - -  to the 

cost  functional and t rea ted  the resulting problem a s  one with a control con- 

s t raint .  Berkovitz [Z], i n  1962, derived the same  conditions a s  in [I], by way 

of the c l a s s i ca l  calculus of variations.  He too used the f i r s t  t ime-derivative 

of the constraint,  which, by his  constraint qualifications, contained the control,  

Bryson, Denham and Dreyfus [3], extended the above procedure to  c a s e s  

where the state-variable constraint was of o rde r  p 3 1.$ To ensure  feasibility 

of the resulting t rajectory,  they adjoined a point equality constraint,  consisting 

of the s tate  constraint and i t s  (p - 1) t ime-derivatives,  a t  the t ime of en t ry  

of the t ra jec tory  onto the constraint boundary. Their  resu l t s  reduce to those 

of Gamkrelidze and Berkovitz for  the c a s e  of a f i r s t  o r d e r  constraint,  

Chang [4], i n  1962, used a n  ent i rely different approach. He adjoined 

the constraint violation to  the cost functional by  a penalty pa ramete r  and used 

a limiting procedure to obtain the necessa ry  conditions directly.  His proofs  

were  l imited to  the f i r s t  o r d e r  c a s e  (p  = 1).  Dreyfus, in  h is  book [5], c lar i f ied 

this  d i rec t  procedure of adjoining the s tate-variable  constraint p e r  se ,  and 

obtained the same  necessary  conditions. Speyer [6] pointed out that Dreyfus 

arguments  failed for constraints  of o rde r  p > 1, a s  then the adjoining mult i -  

pl ier  ma,y exhibit impulsive behavior. Breyfus suggested the resolution of 

this ma t t e r  a,s a r e s e a r c h  problem. 

a, The constraint i s  assumed to be  of p-th order ,  i ,  e ,  the p-th t ime-derivative 
of the constraint is the f i r s t  to contain the control var iable  explicitly. 



Speyer [7] extended the direct  approach to constraints of higher o rde r ,  

by adjoining directly the state-variable constraint to the cost functional, 

together with point equality constraints a t  junctions of boundary and in ter ior  

a r c s .  He obtained a se t  of necessary  conditions which differed from, but 

were related to, those obtained in  [3] .  Mclntyre and Paiewonsky [8] used a 

s imi lar  approach. 

A third set  of necessary  conditions, differing considerably in form 

f rom those i n  [3] and [7] were obtained by Dreyfus in  his P h .  D. thesis [9]. He 

used the constraint and i t s  p - 1 time-derivatives to reduce, by p, the 

dimension of the s ta te  space along the constraint boundary. These resu l t s  

were  related to those of [2] by Berkovitz and Dreyfus [lo], for  the c a s e  p = 1. 

Speyer has  shown that these a r e  related to the necessary  conditions derived 

in  [7]. 

Concurrently with these theoretical investigations, r e  sea rch  was 

progressing on numerical  methods for  the solution of state variable inequality 

constrained problems,  Denham and Bryson (111 used the resul ts  of [3] for 

a s teepest  ascent  algorithm. Speyer [7] proposed a second order  sweep a l -  

gorithm. In 1962, Kelley [12] contributed by extending a device of Courant 

[13] to obtain a penalty function technique for the numerical solution of such 

problems.  Other penalty procedures  have been investigated by Lasdon, 

Waren and Rice [ l la] ,  and Thrasher  [26]. Kelley's procedure adjoins the 

square  of the constraint violation to the cost  by means  of a penalty pa ramete r ;  

the resulting unconstrained problem i s  solved repeatedly for successively in- 

c reas ing  penalty pa ramete r  values.  The convergence of this type of procedure 

has been discussed by Butler and Martin [15], Russe l l  [16], Lele  and Jacobson 

[17], Cullum [P8], ar_d Bel t rami  [ I  91. Bel t rami  derived the generalized 

Kuhn-Tucke r optimality conditions in a Hilbert space by investigating fur ther  

the limiting behavior of the penalty method. 



In this  paper,  following Chang and Bel t rami  we derive necessary  condi- 

tions of optimality f rom the limiting f o r m  of the Kelley penalty function 

technique. This yields necessary  conditions of optimality which a r e  s imi l a r  

to those of Speyer [7], except a t  the junction points of boundary and in ter ior  

a r c s .  At these points the influence functions exhibit fewer discontinuities 

than predicted in  [7]. (The s a m e  resul t  can be obtained from the Lasdon, 

Waren and Rice procedure (141. ) This i s  confirmed, under weaker assump-  

tions, with the aid of the generalized Kuhn-Tucker conditions. We show the 

relationship of our r e su l t s  to those of [3] and (71. In par t icular ,  we demon- 

s t r a t e  that Speyer 's  necessary  conditions a r e  identical to ou r s  provided that 

all ,  except possibly one, of the mult ipl iers  adjoining the point constraint a t  

the junction a r e  zero.  This leads us  to the conclusion that, in  addition to  

Speyer 's  stated conditions, i t  i s  necessary  that all his  entry and exit point 

adjoining mult ipl iers  be ze ro  except, possibly, the f i r s t .  

The necessary  conditions of [3] can  be derived directly,  by integration 

by parts ,  f rom ours;  this  derivation indicates that i t  i s  necessary  that ce r t a in  

Note that for the case  where p = 1, and for p = 2 if the Hamiltonian i s  

regular ,  our  resu l t s  a r e  equivalent to the above [7] known necessary  conditions, 

since there  i s  then only one adjoining multiplier a t  entry and exit points. We 

use a fourth o rde r  c o n s t r a h e d  problem to i l lustrate  that the existing necessa ry  

conditions of Bryson, Denhaxn, and Breyfus and Speyer,  can be satisfied by a 

non-extremal (i. e,  non-stationary t rajectory)  and thus can yield an  incorrec t  

answer.  In the pa,rticular example considered, a t ra jec tory  consisting of 

boundary and in ter ior  a r c s  is pieced together; this sat isf ies  the existing 

necessary  conditions [3]  and [7]. However, i t  turns  out that the unconstrained 

optimal t ra jectory is a t  a l l  t imes  feasible and yields a lower value of the cost.  



The problem was deliberately chosen to  be convex so  that no s tat ionary but 

non-optimal solutions exist .  This confirms that the necessa ry  conditions of 

Bryson, Denham and Breyfus and Speyer can be satisfied by a non-extremal.  

In our necessary  conditions the influence functions may  exhibit discon- 

tinuities a t  junction points of boundary and in ter ior  a r c s  only along the direction 

S . $ F o r  problems where the Hamiltonian i s  regular ,  yielding a continuous 
X 

optimal control function of t ime [8], we a r e  able to der ive a par t icular ly 

simple expression for  the magnitude of this discontinuity. The form of this 

expression leads us  to conclude that, in  cer ta in  cases ,  problems with s tate  

constraints of odd o rde r  (where p > 1) will not exhibit any boundary a r c s  over  
-L 

non-zero intervals of t ime;  i .  e .  the t ra jec tory  will, a t  most ,  only touch the 

constraint boundary but will not l ie along it .  This behavior i s  i l lustrated by 

a third o r d e r  example which is solved analytically. As  predicted by the theory, 

the constrained t ra jec tor ies  do not remain on the boundary fo r  non-zero in ter  - 
vals of t ime. 

In summary,  we have, by direct ly  adjoining the s tate  variable con- 

s t raint  to the cost  functional, obtained necessary  conditions of optimality 

that a r e  considerably s impler  and s sha rpe r '  ( in that non-extremals cannot sa -  

t i s fy  them) than those of 131-[l l]. Fur thermore ,  we a r e  able to  prove that 

under cer ta in  conditions, problems with constraints of odd o r d e r  (p > 1) cannot 

contain boundary a r c s  of non-zero length. 

2.  Pre l iminar ies  

We f i r s t  s ta te  the basic  problem to be considered and establ ish some 

notation. 

as -/- S(x(t))  0, 1: E[O, T] i s  the s ta te-variable  inequality constraint.  S = - (x( t ) ) .  
x ax 



The following problem will be refer red  to a s  'the basic problem' o r  

'problem (I) I .  

Problem (I) 

Minimize @(x(T))  
U 

subject to  

k( t)  = f(x(t), u ( t ) )  ; x(0) = x 
0 

and the sca la r  state-variable inequality constraint 

S(x(t))  0 ; t E [0, T] 

Here,  

u( t)  - - sca la r  control variable 

x( t)  - -  n-dimensional vector of state-variables 

f - - n-dimensional vector function 

S -- p-th order  state-variable constraint 

@ - - sca la r  function of terminal  value of state-variable 

x - - i n i t i a l v a l u e o f s t a t e v e c t o r ,  assumedknown 
0 

(1 .  I( - -  norm over the space under consideration 

3 - -  such that 

E - -be longingto  

V - - f o r a l l  

3 - -  there  exis ts  

As surnptions 

1. u E L1[O,T] U 

2 .  x E c;[o, T] E X 



3. f i s  a continuous function of x and u and has bounded par t ia l  derivatives 

up to  p-th o rde r  in  both x and u on the interval [0, TI. 

4. @ i s  a continuous and differentiable function of x(T) .  

5. s E c [0, T]. 
P 

6 .  The bas ic  problem has a feasible solution with finite cost v . 
0 

Notes 

1. The basic  problem i s  of the form of Mayer .  However there  i s  no loss  

of generality, for a problem i n  the form of Lagrange o r  Bolza can  always 

be cas t  into the fo rm of Mayer by defining a n  additional state-variable.  

2. u and S a r e  assumed to be sca la r s  for  simplicity, without lo s s  of generali ty.  

3. f ,  S, and a r e  assumed to be implicit  functions of t ime, without any loss  

of generality. 

3. Summary of previous resul ts  

We shal l  summarize  only the resu l t s  of [3] and [ 7 ] ,  a s  these a r e  the 

closest  i n  form to ours .  

3. 1 .  Necessary  conditions of Bryson, Denham and Dreyfus 

In [3] Bryson, Denham and Dreyfus extended the approach of [ l ]  and 

[2] to problems with s tate  constraints of o rde r s  higher than the f i r s t .  They 

differentiated 

S(x(t))  

p t imes  with respect  to t ime to obtain the mixed control-state inequality 

constraint 

They then t ransformed problem (I) into a control-constrained problem by 

applying the constraint (4) along boundary a r c s .  To ensure feasibility of 

the resulting t ra jec tor ies  they a lso  imposed the following equality constraint  

$ See a lso  [ 2 7 ] .  



a t  points of entryS of the t ra jec tory  onto the constraint boundary 

Thus the single s ta te  constraint ( 3 )  was replaced by the point constraint (5)  

a t  entry points and the control inequality constraint (4) along the boundary 

(S = 0). The equivalent problem was 

Minimize @(x(T))  
u 

subject to  

and 

Adjoining (4)  and (5) to ( 6 )  by a s ca la r  multiplier function y(-  ) ( 3  0) and 

vectors  of mult ipl iers ,  y ( t . )  ( 3  0) i = 1 , .  . . , N - -  corresponding to the N 
b 1 

entry points - -  they obtained the following necessary  conditions 

and the a.djoint equations 

where the Hamiltonsan H was defined a.s 

$ This equality constraint could equally well be imposed a t  the points of exit 
f rom the boundary. 



Due to the point constraints (5) ,  the influence functions A ( -  ) suffer 

discontinuities of the form:  

A 

a t  t = t .  (i = 1, . . . , N), the entry points. 
1 

3 .  2.  Speyer 's  necessary  conditions 

Speyer [7] adjoins the state-variable constraint directly to the cost  

functional with a multiplier function p(.  ) ( 3  0). TO ensure feasibility, he 

a l so  adjoins the point constraint (5) - both a t  entry and exit points of boundary 

a r c s  with mult ipl iers  vS (ti) ( 3  0). He obtains the following se t  of necessary  

conditions : 

and 

where the Hamiltonian H i s  

At junction points of in te r ior  and boundary a r c s ,  the adjoint var iables  suffer 

discontinuities; the boundary conditions a r e  

Speyer notes that, in  going from a n  inter ior  a r c  to a boundary a r c ,  

the jumps in A ( *  ) can  be obtained a s  functions of A ( -  ) and x( .  ) immediately 

p r i o r  to  the junction. Thus there  a r e  no m o r e  unknowns in his procedure 

than in the previous scheme [3 ]  



4, Derivation of necessary  conditions via the Kelley penalty function technique 

The Kelley penalty function technique [12] converts the basic  constrained 

problem (1) into the following unconstrained problem, 

m 
I 

Minimize P ( r k )  5 @(x(T))  t - ~ r ~ l ~ o  h ( s ) s 2 d t  
u 

subject to  

where 

and r > 0. 
k 

This problem i s  then solved repeatedly fo r  an  infinite sequence {r  } k 

such that P > r > 0 and limit  k k9-1 k-+m =-k 
= 0. Lele  and Jacobson [I61 have 

shown that, under ce r t a in  conditions, the above procedure converges.  We 

state  their  ma in  theorem below, with a slight modification. 

Theorem - I .  Let  { r  )- be a n  infinite sequence of positive numbers 
k 

I k  ' l l r t  l > 0 and l imit  
k--?boo rk 

= 0. Under cer ta in  conditionsS, the 

P-function is minimized by a bounded control function u (not necessar i ly  k 

unlque); fur ther ,  every  l imit  point of the sequence of control functions ( u  } k 

solves the problem (1). 

Here  u denotes the optimal control for  the k-th problem, i .  e ,  the k 

unconstra,ined problem corresponding to the k-th member  of the sequence 

r Let us now examine the necessary  conditions of optimality for this,  

unconstrained, problem. Defining the Hamiltonian H a s  k 

See [I171 p. 165.  



the necessary  conditions of optimality a r e  

and 

- 1 
If we denote the t e r m  r h(S)S by qk, (20) may  be re-wri t ten a s  

k 

We can  now derive the necessary  conditions of optimality for  problem (I) by 

t considering the equations (18), (1 9)  and (21) in  the l imit  a s  r k I  0 . F o r  

this purpose consider  only the l imit  

l imit  k + a q k ( a ) E d * )  - (22) 

Bel t rami  [19] has  shown that, under cer ta in  additional restr ic t ions on a, S 

and U, the above l imit  exis ts  and is bounded. His proof i s  stated for  the 

1 
c a s e  when S maps X to E ' , .  It can  be readily extended to the present  case ,  

with the essent ial  change that 

l imit  q ( t )  E q(t)  < constant a. e .  
k + a  k (2 3 )  

This gives the following necessa ry  conditions of optimality 

and 

$ Chang [4] uses  a s imi l a r  approach. An alternative,  r igorous derivation is 
given in Section 5. 



where q ( 0 )  'f 0 and we have defined H a s  

H limit  H = l imit  
k+co k ( v S - f - ~ ~ f )  ~ k+co k 

F r o m  ( 2 3 ) ,  it follows that the function q ( -  ) m a y  contain impulses of 

positive weight. This would lead to  discontinuities in the influence functions 

of the form 

where t E [0, T] i s  the t ime a t  which the impulse occurs  and v 3 0 i s  a sca la r .  
1 

Equations (24)-(27) form the necessary  conditions for problem (I).  As 

can be seen,  (27) i s  considerably different f rom e i ther  (10) o r  (14), which 

give the existing form of the discontinuities. In the next section, we der ive  

the above necessary  conditions direct ly  and rigorously, and we show that 

the discontinuities i n  the influence functions occur a t  the junctions between 

boundary and inter ior  a r c s .  

5. A d i rec t  derivation of the necessa ry  conditions 

We present  below a n  alternative derivation of the necessary  conditions 

of optimality, (24)-(27). Basically we rederive the generalized Kuhn-Tucker 

conditions [20] in  a Banach space. Russel l  [21] has  previously derived these 

conditions i n  a general topological space and applied them to a s tate  con- 

s t rained problem. Luenberger  [ 2 2 ]  has obtained s imi l a r  resu l t s .  However, 

these r e s e a r c h e r s  have not related their  work to  that of [3], [7]. 

Our proof, in Section 5. 1, follows closely that in  [22], with the essent ia l  

difference of no qualification on the constraint.  This admits  the,possibi l i ty  

of a n  unbounded mult ipl ier ,  After t ranslat ing the necessary  conditions to 

state space in  Section 5. 2, in Section 5. 3 we prove the boundedness of the 

multiplier under a different qualification, m o r e  natural  f rom the control- 

theoretic point of view. 
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5. 1. A generalized Kuhn-Tucker Theorem 

F o r  the purposes of this section we write the basic problem in the 

form 

Minimize @(u) 
U 

subject to  

Here 8 denotes the null vector in  C [o, TI. We will now consider necessary  
P 

conditions of optimality for this problem. 

All differentials and derivatives will be in  the sense of ~ r g c h e t . .  The 

symbol (x, T) will denote the value of the l inear  functional T(x) a t  a point 

Theorem 2. Let  Q, be a rea l  valued Frgchet differentiable function on U, 

and S : U + C [0, T] a Fre/chet differentiable mapping. Suppose u'k E U mini-  
P 

mizes  @ subject to S(u*) Q 8. Then there exis ts  ro 3 0, q'k E L ~ [ o ,  TI, 

q" 3 8, such that the Lagrangian 

i s  stationary a t  u'k . Fur ther  

Proof.  Define the following se ts ,  A and B, on W = R x C [0, TI. 
P 

, ~ = { r , z I r a  ~ @ ( U : ~ ; ~ U ) , Z ~ S ( U * ) C ~ S ( U * ; ~ U )  

for some 6u E U) (31) 

and 

The se t s  A and B a r e  convex; B contains inter ior  points a s  C [0, T] 
P 

has positive cone. 



Denote by Int(B) the i ~ t e r i o r  of B .  Then 

A n  lnt(I3) = 6 (33) 

the empty se t .  F o r ,  i f  ( r ,  z )  E A 3 r < 0, z < 8, then 3 6u E U 3 

6a(u:k 6 ~ )  < o , S(U" ) + Gs(u::: ; 6u) 6 8 (34) 

Then 3 a sphere  of radius P centered on S(u:ic) += ~ s ( u * ;  6u) N (the negative 

cone i n  G [0, TI).  F o r  0 < a < 1 the point a[S(u:::) + 6 ~ ( ~  6u)J i s  the center  
P 

of a n  open sphere of radius a- P contained i n  N; hence s o  i s  the point 

(1 - a)S(u*) + a[S(u*) t. ~s(u:%; 6u)] = S(u:k) + a* 6~(u:k; 6u). As for  fixed 6u 

I ~ S ( U *  + a6u) - s (u>~)  - a- ~ S ( U * ~  6u) 11 = o(a)  ( 3  5) 

i t  follows tha,t for sufficiently smal l  a, S(u:k + a6u) < 8. A s imi la r  argument  

shows that @(u* 9 a6u) < @(u'k) for sufficiently sma l l  a. This contradicts the 

optimality of u" . Therefore 

A n Int(B) = & 
So A and B a r e  two convex se ts  in the normed space R x Cp[O, T] such that 

A f7 Int(B) = & and Int(B) # 4. Therefore 3 a closed hyperplane seperating 

A and B,  [24]. Hence 3 ro, yF 6 such that 

r ~ r = +  ( z j n ~ : ~ )  3 6 Y ( r , z )  E A  
0 ( 3 6 )  

and 

r r + (z, & -C 6 B ( r ,  z )  t B 
0 ( 3 7 )  

As (0,8) e A n B, 6 = 0; and from the nature of B i t  follows that r 3 0, 0 

rfk Q .  F r o m  the seperation property 

r . 5@(~:*; 6u) + ( ~ ( u r )  + 6s(u;; du), @k) 2 0 
0 

v 6u E U.  

F r o m  the above inequality, 6u = Q 

and $ 3 k3 =s(s(u*), $) 0, hence 

(qu") 8 9 ) = 0 



It then follows that Q 6u E U 

r 6m(u:a, 6,) + (6s(u*; 6,); ,:k) = 0 
0 

romU;:< + rfkS U',. ,,. = f3 (41) 

where mu::, SU, denote the ~ r g c h e t  derivatives of @ and S evaluated at  u*. 

We will now translate  these resul ts  into the m o r e  famil iar  s tate  space 

fo rm.  

5 .  2. The stationarity conditions in  state space 

In state space, the equivalent of the Lagrangian of (29)  i s  the adjoined 

cost  functional 

Then following the usual  procedure [27] we consider variations in 5 

for a rb i t r a ry  variations 6x, 6u. This gives the following conditions for  

stationarity of 5: 

and 

where the Hamiltonian H i s  

and f rom (30) 

>- 0 S(x(t))  = 0 
@( t )  = 

i o  

(46) 
S(x(t))  < 0 

F r o m  Section 5. 1, these a r e  the necessary  conditions that a control u'k and 

i t s  associated t rajectory x':< satisfy i f  they solve (I). 



5. 3. Boundednes s of the adjoining multiplier 

a Theorem 3. I£ - [(S)(*:(t), u'ic(t))] # 0 Y t E [0, T] then r o  # 0. 
au(tE 

Proof .  F o r  c1arityS and without any loss  of generality we will assume that 

the optimal t ra jectory x:h has  only one boundary a r c  and two inter ior  a r c s .  

Suppose r = 0. Then X(T) = 0 (from (43)); hence 
0 

h(t)  = 0 t E (texl T] 

where t = t ime of exit f rom boundary a r c .  F r o m  (44), V t E [0, T] e x  

hence 

and s imilar ly for higher derivatives of H . In par t icular ,  a t  t = t 
/ 

u ex  

where the - and + superscr ip ts  denote instants just p r io r  to, and just a f te r  

tex, respectively. F r o m  (43), we have that 

which substituted into 

yields, a f te r  some ma*nipulation (since X(t) = 0; t E ( t  TI) ex9 
- 



P 
As, by assumption (S) # 0, q*(t ) < co. This gives ~ ( t -  ) = 0. Now, from 

u ex ex 

along S = 0 we have 

P-1 
[ terms involving (f ) etc]X(t) 

$(t) = u 
P 

This gives a l inear homogeneous differential equation for  A ( .  ) along S = 0, 

with the initial condition ~ ( t -  ) = 0. Hence A ( .  ) = 0 along the boundary. 
ex 

Thus, 

- €I contradicts the fact that 3 a closed a s  well a s  r = 0. But r = 0, r)': - 
0 0 

seperating hyperplane (Section 5. 1) .  Thus ro # 0. 

F o r  convenience we set r = 1.  We now show that q:: i s  bounded every- 
0 

where except possibly a t  junction points of boundary and interior a r c s .  

Theorem 4. The multiplier q'k i s  bounded everywhere along the boundary, 

except possibly a t  junction points of boundary and interior a r c s .  At such a 

junction point, it may exhibit a positive impulse of finite strength. 

Proof.  As in Theorem 3, we will assume,  without loss of generality, that 

x* has only one boundary a r c  and two interior a r c s .  

F rom (54), $(. ) along the boundary i s  given by 

P - 1 
[ terms involving (f  ) etc]A(t) 

$(t) = u 
P 

Denote by t l ,  the time of a junction between the boundary a r c  and an inter ior  

arc ;  superscripts  - and d- denote t imes pr ior  to and after the junction, respec-  

tively. Then from (43) 



-t ( ~ ( t ; )  i s  assumed bounded ) r  

This coupled with (55),  (43) and 

leads to the conclusion that 

unbounded ==9 q*(. ) unbounded 

everywhere, which contradicts the fact that 3 a closed hyperplane i n  Theorem 2 .  

Hence 

and thus ~ ( t ; )  i s  bounded and hence X(t) i s  bounded along S = 0, s o  that 

with the possible exception of junction points, where i t  may  exhibit positive 

impulses  3 0)  of finite strength.  

This l a s t  possibil i ty i s  conveniently summarized  by adding the following 

junction condition to the necessary  conditions (43), (44): 

where t i s  the t ime of the junction. E 

5 . 4 .  The necessa ry  conditions summarized  

We summar ize  below the necessa ry  conditions derived in  this  section. 

Theorem 5. The necessa ry  conditions for  optimality of problem (I) a r e  

A reasonable assumption. 



ah- -X = - 
ax 

where 

i s  a bounded function for t E [0, TI. 

At junction points t .  of boundary and in ter ior  a r c s ,  the influence 
1 

functions A ( .  ) may be discontinuous. The boundary conditions a r e  

v(ti) 3 0. The Hamiltonian H, used above, i s  defined by 

T H E f i S i - X  f 

5. 5. Generalization 

r 
F o r  the case  where S E C [0, TI, the necessary  conditions a r e  the 

P 

same a s  those above, but ?(* ) and v a r e  r -vec tors .  If t e rminal  equality 

constraints ($'(x(tf) t ) = 0) a r e  present ,  then the necessa ry  conditions take 
f 

the following form:  

Theorem 6. (Equality Terminal  Constraints) If in  addition to the assumptions 

of Section 5, the following a r e  t rue  

i s  completely controllable 

ii) @x(x*(tf)j  t f )  has  rank q ($' i s  a q-vector function) 

then necessary  conditions of optimality a r e :  



u i s  a q-vector of constant Lagrange multipliers and 

At junction points of boundary and inter ior  a r c s :  

Proof .  We only sketch the proof here .  The above problem may  be considered 

i n  the following nonlinear programming formulation 

Min @(u) 
u 

subject to 

Assumptions i ) ,  ii) above imply that @ i s  regular  a t  u*. 

Define the se t  

The se t  A (Theorem 2) i s  now defined a s  

A E { ,  z : r 6f(u*; 6u), z 3 ~ ( u * )  t 6s(uiXj 6u); for some 6u c ul} 
(72) 

Using s imi lar  though m o r e  involved argurnents than those of Theorem 2 

i t  follows, since @ is regular  a t  u*, that 

This leads to the conclusion 

a Translating back into s tate  space and using the assumption - (S) # 0; 
au(t) 

t E [0, T] yields the necessary  conditions (67)-(70).  



6. Relation to previous resu l t s  

6. 1. Bryson, Denham and Breyfus 

Let us rewri te  (42)  a s  the following (noting that r = 1 )  
0 

Minimize J - @(x(T))  f d r  q( r )S(x( r ) )  
u 

subject to 

k( t )  = f(x(t) ,  u( t ) )  ; x(0) = x 
0 (76) 

where we have wri t ten q for  q::. F o r  simplicity, and with no loss  of generali ty,  

we will a s sume  that the optimal t ra jec tory  has only one constrained a r c .  

Then integrating the cost functional by pa r t s ,  equation (75) becomes (dropping 

the Min operator  for  simplicity),  
u 

T 

where 

Adding and subtracting q l ( t  )S(t ): (77) becomes 
ex  en  

t 

where 

- - 
V1 - u1(tex) - vl( ten)  0 

and 

ex 
$ Note that r q ( r ) S ( x ( r ) ) d ~  r d r  qS 



We can  c a r r y  on this process  of integration by pa r t s  until finally we obtain 

where 

T . 0 .  P-1 
Q = (S, s, s, . . . , (S) ) 

and 

and 

and 

and where 

and 

Identifying q (. ) with y(. ) we see  that (82) i s  equivalent to  the adjoined 
P 

cost  functional of [3]. If we now use (82) a s  the functional to be minimized 

subject to equation (76) we obtain the same stationarity conditions a s  those 

given by equations (8)-(10).  The noteworthy point i s  the se t  of equations 

(85)-(88). These indicate that the v's and y(t) of [3]  a r e  related along the 

optimal t ra jectory.  

6. 2. Relation to Speyer 's necessary  conditions 

Speyer Is [7] necessary  conditions reduce to those given by us,  i f  h is  

mult ipl iers  v through v a r e  zero.  F o r ,  if that i s  the case ,  (14) and (65) 
S2 

a r e  the same,  and setting ;(- ) equal to  f i ( .  ) completes the connection. 



The fact that, along a n  extremal  Speyer 's  mult ipl iers  v through vS 
S2 P 

a r e  zero  leads to a n  interesting result, provided the Hamiltonian (66) has  a 

unique minimum i n  u( .  ) for  a l l  t E [0, TI, i .  e .  if the Hamiltonian i s  regular .  

In this case ,  Speyer [7] and McIntyre and Paiewonsky [8] have shown that 

u(. ) must  be continuous a c r o s s  the junction, and that v = 0. But i f  v 
t3-2 s D - l '  

C L- i 

a r e  a l l  zero,  then u and all i t s  derivatives up to (u)  must  be VsD-2, "s2 
i- - 

continuous a c r o s s  the junction. This resul t  i s  easi ly  obtained from [a]  o r  

equations (14) and (50). 

7. A further  consequence of the new necessary  conditions 

F o r  the regular  case ,  where, f rom the preceding discussion, u and 

i ts  (p - 2 )  t ime derivatives a r e  continuous we have: 

4- Theorem 7. If the Hamiltonian H i s  regular ,  S E BZp..l[~,  T] and the ex t re-  

ma1 path has  a boundary a r c  of non-zero length, then 

where ( ) -  denotes ( ) on the inter ior  a r c  a t  the junction t ime t l .  

Proof .  We use  (65) and 

which holds a c r o s s  a junction; noting that 

T P-' 
= f 1 (u) f t e r m s  of lower o rde r  t ime derivatives of u 

uu 

f t e r m s  in  f f e tc .  u X 

$ BZp- 5 space of all functions whose (2p-1 )th derivatives exist and a r e  

bounded . 



we have the following expression for v( t l )  (af ter  simplifying i t  with the aid 
t3-1 
L 

of (65) and the above expression for  (H ) ): 
u 

As S E B [0, T] by assumption, we have, f rom the general expression 
2p-1 

2p-1 p p-1 
(S) = (S) (u) + lower order  t ime derivatives of u + t e r m s  in f,  (f) e tc .  u 

the relation 

whence, 4- 

This expression fo r  v(t ) is ve ry  significant. Note that HUU > 0 (strengthened 1 
P-1- P- l+ 2 

necessarycondit ion for a rn in imum),  [ ( u )  - (u) ] 3 0 and a s  S and i t s  t ime 
2p-2 

derivatives up to (S) a r e  continuous ( therefore zero)  

for  the t ra jec tory  to reach  the boundary. This implies that 

for p odd. But v( t l )  3 0 and hence (93) implies that fo r  odd o rde r  constraints  
P-1- P- l+ 

the t ra jec tory  will, a t  most ,  only touch the boundary, i f  (u) # (u)  . Note 

- f that for p = 1, u = u , s o  that, f rom (91) v( t l )  = 0; thus f o r  the f i r s t  o r d e r  

case  boundary a r c s  a r e  permitted. 

2p- 1 
$ (s)' = 0 as S and a l l  i t s  t ime derivatives a r e  ze ro  along boundary. 



This behavior and (92) a r e  reminiscent of junction conditions in  

singular control problems. This provides a further  hint of a close connec- 

tion between state  -constrained and singular control problems which has 

been suggested elsewhere [25]. 

8. A third order  problem 

Third and fourth order  s tate  constrained problems a r e  i l lustrated. 

The third order  problem confirms the resul t  of Section 7, a s  all optimal 

t ra jec tor ies  do not s tay on the constraint boundary for any nonzero length of 

t ime.  

Consider the following problem: 

Minimize 
u 

subject to 

I x1 = X2 
x (0) = 0 = x l ( l )  1 

- 
k2 - X3 

x2(0) = 1 = -x  (1) 2 

k3 = u x3(0) = 2 = x (1) 
3 

and the constraint 

x l ( t )  - 1 0 t E [O,  11 

where B ranges a s  

3 - 2 8 3  0 
8 (97) 

The solution to the unconstrained problem i s  obtained f i rs t .  The 

Hamiltonian H is 

The adjoint equations a r e  

i. = o  1 
X (1 )  = constant 

1 

i, = -x 
1 

X (1 )  = constant 
2 

A = -X 
3 2 

X (1)  = constant 
3 



Minimizing the Hamiltonian gives the optimal control 

H = O = u f h  = + u =  
U 3 

The solution to  the problem i s :  

0 Optimal control i s  u 

0 1 u = 4 8 ( t - - Z )  . 
Optimal t ra jec tory  

= 24t2 - 24t + 2 

Adjoint variable his tor ies  

3 Note that the constraint i s  not effective for P > - 8 ' 

The solution to the constrained problem consists of two par t s .  

9 F o r  P i n  the range - < P 4 2 there  i s  only one point of contact with 40 8 
1 

the constraint boundary a t  t = -, The complete solution i s  
2 



and the adjoint variable history i s  

and 

where 

I 3 a = 5120(L - 3 - )  
39 b = -3200(8 - -) 
100 (111) 

9 c = 320(1 - =) 

When L < -;I-d, the single point of contact splits into two, instead of a boundary 

a r c  a s  would occur for the same constraint on x Z ( l )  [27], The solution i s  a 

trifle m o r e  complicated and consis ts  of four par t s :  one pr ior  to  the f i r s t  

1 
point of contact with the constraint boundary a t  t ime t l  (< z), one fo r  

1 1 
t F [ t l , ~ ] ,  one f o r t  E [ ~ , l  - t l ]  and one f o r t  E [ l  - t l , l ] .  The t imes of 

1 
contact a r e  symmetric  about t = - 2 '  

The optimal control u i s  : 



The optimal t ra jec tory  is 

and 



where 

d t  btf dt? 
A:-  

3 f -  2 + c t 1 + 2 - - -  2 etl  

and 5 
a t  bt: ct  3 3 

1 1 2  dt: et l  c z - f -  
60 24 6 24 6 2 Btl f t l  + t l  - - - - - -  

The adjoint variable histories a r e  

and 

2 
a ( l  - t )  + b ( l  - t )  f c 1 - t l  ‘C t C  1 

The constants a,  b, c, d, e and t l  a r e  related to Q by the following se t  of 

equations : 



The equations (122) were  t reated a s  a set  of l inear  equations in  a ,  b, c, d, e 

1 
and 1, and solutions found for t l  i n  the range [ o , ~ ] .  The t imes  of contact 

a r e  plotted vs 1 in  Fig.  1 which shows x ( -  ) for various values of 1. Fig ,  2 1 

shows the corresponding control history. It i s  worth noting that, a s  the 

Hamiltonian i s  regular ,  the control u i s  continuous, a s  a l so  i s  but ii i s  

discontinuous a t  t l  and 1 - t F o r  this problem, G(. ) = 0. 1 ' 

9. A fourth order  problem 

We have se t  up this problem to demonstrate that a nonextremal can  

satisfy the necessary  conditions of Bryson, Denham and Dreyfus [3] and 

Speyer [7]. 

Consider the following fourth o rde r  problem 

l o  2 
u 

Min Jo 7 dt 
u 

subject to  

[. 

x1 = X2 
x1 (0) = 0 = x l ( l  0) 

- k2 - X3 
15 x2(0) = -x  (1 0) = - 2 12 

k3 = X 
15  

4 
x (0) = x (10) = -- 

3 3 12 

15 
x4 = 

x4(0) = -x  (10) = - 4 16 

and the constraint 

Xl(t) - 1 Q 0 t € [ O , 1 0 ]  0 

The following t rajectory,  consisting of a boundary a r c  between t = 4 

and t = 6 and two in ter ior  a r c s  sat isf ies  a l l  the necessary  conditions given 

in  [ 7 ] .  



T l M E  ---+ 

FIG. 1 THIRD ORDER PROBLEM xi(.) vs. TIME 



PARABOLIC 
PARABOLIC CONTROL 

FIG. 2 THIRD ORDER PROBLEM u ( - 1  vs. T I M E  



x ( t )  = { 0 
3 

4 - ( t - ( 6  

x ( t )  = ( 0 4 
4 - ( t - ( 6  

15  
where a = - 128 " 

The adjoint variables a r e  

X1 = 0 O - ( t - ( 1 0  

and 

- 15 Here  p(- ) = 0, - 
Ysl 

= = O >  V,S3 - 128 9 
and vS = 0 a t  entry and exit .  All  

4 
of Speyer 's  optimality conditions a r e  satisfied and the va,lue of the cos t  



functional is 0. 293. Also, Bryson, Denham and Dreyfus ' necessary  conditions 

a r e  satisfied with 

and 

v(' = 0 0 G t d 4 ,  6 G t d  10 

However, the unconstrained optimal t ra jec tory  given below, turns  

out to be feasible, and gives a cost of 0. 2897. Other stationary t ra jec tor ies  

a r e  ruled out a s  the problem i s  convex. This implies that the necessary  con- 

ditions of Bryson, Denham and Dreyfus and Speyer have yielded a spurious 

extremal .  

Unconstrained t rajectory 

where b = -0.02025, c = 0.2025, d = -0. 525. Fig.  3 shows xl for  both c a s e s .  

10. Conclusions 

We have considered the question of necessary  conditions for optimality 

of state-constrained control problems. Two approaches were  used. In the 

$ Note that for cer ta in  initial conditions optimal t ra jec tor ies  will lie along 
the constraint boundary; expression (89) suggests this .  
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FIG. 3 FOURTH ORDER PROBLEM : x,(*)  vs. T IME 



f i r s t ,  necessary conditions were  obtained by limiting arguments  based on 

the well-known Kelley penalty technique. The second approach utilized 

functional analysis and variational theory; the significant difference was 

that, unlike [3] and [7] no a p r io r i  constraints were imposed to  ensure  

feasibility, Our necessary  conditions yield a considerable simplification 

in  the junction conditions on the influence functions over  those obtained by 

previous r e sea rche r s .  We do not imply that the necessary  conditions ob- 

tained by previous workers  a r e  incorrect ,  but ra ther ,  that, inasmuch a s  

they overspecify the conditions a t  the junction, there  exis ts  the possibility 

of non-stationary solutions satisfying these conditions a s  shown in  Section 9 

Thus misleading resu l t s  m a y  be obtained using the existing necessary  condi- 

t ions.  Our necessary  conditions yield extremals .  
P-1- P-l+ 

F o r  the regular  case ,  we have discovered that, i f  (u)  # (u)  , problems 

with odd-ordered constraints  do not have boundary a r c s ,  ( a s  opposed to 

boundary points), We feel  that this resul t  has  a two-fold significance; f i r  s t ,  

i t  yields fur ther  insight into the s t ructure of solutions of s ta te  constrained 

problems,  and second, i t  provides one m o r e  clue towards the connection 

between state-constrained and singular problems, which has  been speculated 

upon elsewhere [25]. 

The comparatively simple form of the new necessary  conditions should 

stimulate re sea rch  into new, efficient techniques for  solving state constrained 

optimal control problems 
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